Source code for dit.multivariate.common_informations.gk_common_information
"""
Compute the Gacs-Korner common information
"""
from ...algorithms import insert_meet
from ...helpers import normalize_rvs, parse_rvs
from ...npdist import Distribution
from ...shannon import conditional_entropy as H
from ...utils import unitful
[docs]@unitful
def gk_common_information(dist, rvs=None, crvs=None, rv_mode=None):
"""
Calculates the Gacs-Korner common information K[X1:X2...] over the random
variables in `rvs`.
Parameters
----------
dist : Distribution
The distribution from which the common information is calculated.
rvs : list, None
The indexes of the random variables for which the Gacs-Korner common
information is to be computed. If None, then the common information is
calculated over all random variables.
crvs : list, None
The indexes of the random variables to condition the common information
by. If none, than there is no conditioning.
rv_mode : str, None
Specifies how to interpret `rvs` and `crvs`. Valid options are:
{'indices', 'names'}. If equal to 'indices', then the elements of
`crvs` and `rvs` are interpreted as random variable indices. If equal
to 'names', the the elements are interpreted as random variable names.
If `None`, then the value of `dist._rv_mode` is consulted, which
defaults to 'indices'.
Returns
-------
K : float
The Gacs-Korner common information of the distribution.
Raises
------
ditException
Raised if `rvs` or `crvs` contain non-existant random variables.
"""
rvs, crvs, rv_mode = normalize_rvs(dist, rvs, crvs, rv_mode)
crvs = parse_rvs(dist, crvs, rv_mode)[1]
outcomes, pmf = zip(*dist.zipped(mode='patoms'))
# The GK-common information is sensitive to zeros in the sample space.
# Here, we make sure to remove them.
d = Distribution(outcomes, pmf, sample_space=outcomes)
d.set_rv_names(dist.get_rv_names())
d2 = insert_meet(d, -1, rvs, rv_mode=rv_mode)
common = [d2.outcome_length() - 1]
K = H(d2, common, crvs)
return K