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dit is the python module for all your discrete information theory needs.
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CHAPTER 1

Basic Usage

The basic usage of dit corresponds to creating distributions, modifying them if need be, and then computing proper-
ties of those distributions. For example:

>>> from dit.example_dists import Xor
>>> from dit.algorithms import entropy
>>> d = Xor()
>>> print(d)
Class: Distribution
Alphabet: (’0’, ’1’) for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 0.25
011 0.25
101 0.25
110 0.25
>>> print(entropy(d))
2.0

Here, we imported an example distribution constructor (that of the logical exclusive or) and the entropy function. Then
we instantiated the XOR distribution, printed it, and computed its entropy.

3
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CHAPTER 2

Notation

dit is a scientific tool, and so, much of this documentation will contain mathematical expressions. Here we will
describe this notation.

2.1 Basic Notation

Many distributions are joint distribution. In the absence of variable names, we index each random variable with a
subscript. For example, a distribution over three variables is written X0X1X2. As a shorthand, we also denote those
random variables as X0:3, meaning start with X0 and go through, but not including X3 — just like python slice
notation.

If we ever need to describe an infinitely long chain of variables we drop the index from the side that is infinite. So
X:0 = . . . X−3X−2X−1 and X0: = X0X1X2 . . .. For an arbitrary set of indices A, the corresponding collection of
random variables is denoted XA. For example, if A = {0, 2, 4}, then XA = X0X2X4. The complement of A (with
respect to some universal set) is denoted Ā.

2.2 Advanced Notation

When there exists a function Y = f(X) we write X � Y meaning that X is informationally richer than Y . Similarly,
if f(Y ) = X then we write X � Y and say that X is informationally poorer than Y . Of all the variables that are
poorer than both X and Y , there is a richest one. This variable is known as the meet of X and Y and is denoted XfY .
By definition, ∀Zs.t.Z � X and Z � Y,Z � X f Y . Similarly of all variables richer than both X and Y , there is a
poorest. This variable is known as the join of X and Y and is denoted X g Y . The joint random variable (X,Y ) is
equivalent to the join.

5
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CHAPTER 3

Distributions

Here we describe how to create, modify, and manipulate distribution objects.

3.1 Numpy-based ScalarDistribution

ScalarDistribution specific stuff.

3.2 Numpy-based Distribution

Distribution specific stuff.

7



dit Documentation, Release 1.0

8 Chapter 3. Distributions



CHAPTER 4

Information Measures

dit supports many information measures, ranging from as standard as the Shannon entropy to as exotic as Gács-
Körner common information (with even more esoteric measure coming soon!). We organize these quantities into the
following groups.

We first have the Shannon-like measures. These quantities are based on sums and differences of entropies, conditional
entropies, or mutual informations of random variables:

4.1 Basic Shannon measures

The information on this page is drawn from [3].

4.1.1 Entropy

The entropy measures how much information is in a random variable X .

H[X] = −
∑
x∈X

p(x) log2 p(x)

entropy(dist, rvs=None, rv_names=None)
Returns the entropy H[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution or float) – The distribution from which the entropy is calculated. If a float,
then we calculate the binary entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the entropy. If
None, then the entropy is calculated over all random variables. This should remain None for
ScalarDistributions.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns H (float) – The entropy of the distribution.

9
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4.1.2 Conditional Entropy

The conditional entropy is the amount of information in variable X beyond that which is in variable Y .

H[X|Y ] =
∑

x∈X,y∈Y
p(x, y) log2 p(x|y)

conditional_entropy(dist, rvs_X, rvs_Y, rv_names=None)
Returns the conditional entropy of H[X|Y].

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution) – The distribution from which the conditional entropy is calculated.

• rvs_X (list, None) – The indexes of the random variables defining X.

• rvs_Y (list, None) – The indexes of the random variables defining Y.

• rv_names (bool) – If True, then the elements of rvs_X and rvs_Y are treated as random
variable names. If False, then their elements are treated as random variable indexes. If
None, then the value True is used if the distribution has specified names for its random
variables.

Returns H_XgY (float) – The conditional entropy H[X|Y].

4.1.3 Mutual Information

The mutual information is the amount of information shared by X and Y .

I[X : Y ] = H[X,Y ]−H[X|Y ]−H[Y |X]

= H[X] + H[Y ]−H[X,Y ]

=
∑

x∈X,y∈Y
p(x, y) log2

p(x, y)

p(x)p(y)

mutual_information(dist, rvs_X, rvs_Y, rv_names=None)
Returns the mutual information I[X:Y].

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution) – The distribution from which the mutual information is calculated.

• rvs_X (list, None) – The indexes of the random variables defining X.

• rvs_Y (list, None) – The indexes of the random variables defining Y.

• rv_names (bool) – If True, then the elements of rvs_X and rvs_Y are treated as random
variable names. If False, then their elements are treated as random variable indexes. If
None, then the value True is used if the distribution has specified names for its random
variables.

Returns I (float) – The mutual information I[X:Y].

10 Chapter 4. Information Measures
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4.2 Entropy

This is a general entropy function, handling conditional joint entropy.

4.2. Entropy 11
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entropy2(dist, rvs=None, crvs=None, rv_names=None)
Compute the conditional joint entropy.

Parameters

• dist (Distribution) – The distribution from which the entropy is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the entropy. If None,
then the entropy is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns H (float) – The entropy.

12 Chapter 4. Information Measures
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4.3 Co-Information

The co-information [2] is one generalization of the mutual information to multiple variables. It is defined via an
inclusion/exclusion sum:

I[X0:n] = −
∑

y∈P({0..n})

(−1)|y|H[Xy]

=
∑

x0:n∈X0:n

p(x0:n) log2

∏
y∈P({0..n})

p(y)(−1)
|y|

4.3. Co-Information 13
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coinformation(dist, rvs=None, crvs=None, rv_names=None)
Calculates the coinformation.

Parameters

• dist (Distribution) – The distribution from which the coinformation is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the coinformation
between. If None, then the coinformation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns I (float) – The coinformation.

Raises ditException – Raised if dist is not a joint distribution.

14 Chapter 4. Information Measures
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4.4 Total Correlation

The total correlation [8], denoted T, also known as the multi-information or integration, is one generalization of the
mutual information. It is defined as the amount of information each individual variable carries above and beyond the
joint entropy:

T[X0:n] =
∑

H[Xi]−H[X0:n]

=
∑

x0:n∈X0:n

p(x0:n) log2

p(x0:n)∏
p(xi)

Two nice features of the total correlation are that it is non-negative and that it is zero if and only if the random variables
X0:n are all independent. Some baseline behavior is good to note also. First its behavior when applied to “giant bit”
distributions:

>>> from dit import Distribution as D
>>> from dit.algorithms import total_correlation as T
>>> [ T(D([’0’*n, ’1’*n], [0.5, 0.5])) for n in range(2, 6) ]
[1.0, 2.0, 3.0, 4.0]

So we see that for giant bit distributions, the total correlation is equal to one less than the number of variables. The
second type of distribution to consider is general parity distributions:

>>> from dit.example_dists import n_mod_m
>>> [ T(n_mod_m(n, 2)) for n in range(3, 6) ]
[1.0, 1.0, 1.0]
>>> [ T(n_mod_m(3, m)) for m in range(2, 5) ]
[1.0, 1.58496250072, 2.0]

Here we see that the total correlation is equal to log2 m regardless of n.

4.4. Total Correlation 15
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total_correlation(dist, rvs=None, crvs=None, rv_names=None)

Parameters

• dist (Distribution) – The distribution from which the total correlation is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the total correlation.
If None, then the total correlation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool, None) – If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random variable indexes. If None,
then the value True is used if the distribution has specified names for its random variables.

Returns T (float) – The total correlation

Raises ditException – Raised if dist is not a joint distribution.

16 Chapter 4. Information Measures
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4.5 Binding Information

The binding information [1], or dual total correlation, is yet another generalization of the mutual information. It is
defined as:

B[X0:n] = H[X0:n]−
∑

H[Xi|X{0..n}/i]

= −
∑

x0:n∈X0:n

p(x0:n) log2

p(x0:n)∏
p(xi|x{0:n}/i)

4.5. Binding Information 17
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binding_information(dist, rvs=None, crvs=None, rv_names=None)

Parameters

• dist (Distribution) – The distribution from which the binding information is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the binding informa-
tion. If None, then the binding information is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns B (float) – The binding information

Raises ditException – Raised if dist is not a joint distribution.

18 Chapter 4. Information Measures
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4.6 Residual Entropy

The residual entropy, or erasure entropy, is a dual to the binding information.

R[X0:n] =
∑

H[Xi|X{0..n}/i]

= −
∑

x0:n∈X0:n

p(x0:n) log2

∏
p(xi|x{0:n}/i)

4.6. Residual Entropy 19
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residual_entropy(dist, rvs=None, crvs=None, rv_names=None)

Parameters

• dist (Distribution) – The distribution from which the residual entropy is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the residual entropy.
If None, then the total correlation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns R (float) – The residual entropy

Raises ditException – Raised if dist is not a joint distribution.

The next group of measures are Shannon-esque measures. These are measure that, while not quite based directly on the
canonical Shannon measures like above, they are directly comparable and can be expressed on information-diagrams:

20 Chapter 4. Information Measures
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4.7 Interaction Information

The interaction information is equal in magnitude to the co-information, but has the opposite sign when taken over an
odd number of variables:

II(X0:n) = (−1)n · I(X0:n)

Interaction information was first studied in the 3-variable case which, for X0:3 = X0X1X2, takes the following form:

II(X0 : X1 : X2) = I(X0 : X1|X2)− I(X0 : X1)

The extension to n > 3 proceeds recursively. For example,

II(X0 : X1 : X2 : X3) = II(X0 : X1 : X2|X3)− II(X0 : X1 : X2)

= I(X0 : X1|X2, X3)− I(X0 : X1|X3)

− I(X0 : X1|X2) + I(X0 : X1)

interaction_information(dist, rvs=None, crvs=None, rv_names=None)
Calculates the interaction information.

Parameters

• dist (Distribution) – The distribution from which the interaction information is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the interaction in-
formation between. If None, then the interaction information is calculated over all random
variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns II (float) – The interaction information.

Raises ditException – Raised if dist is not a joint distribution.

4.8 Gács-Körner Common Information

The Gács-Körner common information [5] take a very direct approach to the idea of common information. It extracts
a random variable that is contained within each of the random variables under consideration.

4.8.1 The Common Information Game

Let’s play a game. We have an n-variable joint distribution, and one player for each variable. Each player is given the
probability mass function of the joint distribution then isolated from each other. Each round of the game the a joint
outcome is generated from the distribution and each player is told the symbol that their particular variable took. The
goal of the game is for the players to simultaneously write the same symbol on a piece of paper, and for the entropy
of the players’ symbols to be maximized. They must do this using only their knowledge of the joint random variable
and the particular outcome of their marginal variable. The matching symbols produced by the players are called the
common random variable and the entropy of that variable is the Gács-Körner common information, K.

4.7. Interaction Information 21
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4.8.2 Two Variables

Consider a joint distribution over X0 and X1. Given any particular outcome from that joint, we want a function
f(X0) and a function g(X1) such that ∀x0x1 = X0X1, f(x0) = g(x1) = v. Of all possible pairs of functions
f(X0) = g(X1) = V , there exists a “largest” one, and it is known as the common random variable. The entropy of
that common random variable is the Gács-Körner common information:

K[X0 : X1] = max
f(X0)=g(X1)=V

H[V ]

= H[X0 fX1]

As a canonical example, consider the following:

>>> from __future__ import division
>>> from dit import Distribution as D
>>> from dit.algorithms import common_information as K
>>> outcomes = [’00’, ’01’, ’10’, ’11’, ’22’, ’33’]
>>> pmf = [1/8, 1/8, 1/8, 1/8, 1/4, 1/4]
>>> d = D(outcomes, pmf)
>>> K(d)
1.5

So, the Gács-Körner common information is 1.5 bits. But what is the common random variable?

>>> from dit.algorithms import insert_meet
>>> crv = insert_meet(d, -1, [[0],[1]])
>>> print(crv)
Class: Distribution
Alphabet: ((’0’, ’1’, ’2’, ’3’), (’0’, ’1’, ’2’, ’3’), (’2’, ’0’, ’1’))
Base: linear
Outcome Class: str

22 Chapter 4. Information Measures
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Outcome Length: 3
RV Names: None

x p(x)
002 0.125
012 0.125
102 0.125
112 0.125
220 0.25
331 0.25

Looking at the third index of the outcomes, we see that the common random variable maps 2 to 0 and 3 to 1, maintain-
ing the information from those values. When X0 or X1 are either 0 or 1, however, it maps them to 2. This is because
f and g must act independently: if x0 is a 0 or a 1, there is no way to know if x1 is a 0 or a 1 and vice versa. Therefore
we aggregate 0s and 1s into 2.

Properties & Uses

The Gács-Körner common information satisfies an important inequality:

0 ≤ K[X0 : X1] ≤ I[X0 : X1]

One usage of the common information is as a measure of redundancy [4]. Consider a function that takes two inputs,
X0 and X1, and produces a single output Y . The output can be influenced redundantly by both inputs, uniquely
from either one, or together they can synergistically influence the output. Determining how to compute the amount of
redundancy is an open problem, but one proposal is:

I[X0 fX1 : Y ]

4.8. Gács-Körner Common Information 23
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This quantity can be computed easily using dit:

>>> from dit.example_dists import RdnXor
>>> from dit.algorithms import insert_meet, mutual_information as I
>>> d = RdnXor()
>>> d = insert_meet(d, -1, [[0], [1]])
>>> I(d, [3], [2])
1.0

4.8.3 n-Variables

With an arbitrary number of variables, the Gács-Körner common information is defined similarly:

K[X0 : . . . : Xn] = max
V=f0(X0)

...
V=fn(Xn)

H[V ]

= H[X0 f . . .fXn]

The common information is a monotonically decreasing function:

K[X0 : . . . : Xn−1] ≥ K[X0 : . . . : Xn]

24 Chapter 4. Information Measures
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The multivariate common information follows a similar inequality as the two variate version:

0 ≤ K[X0 : · · · : Xn] ≤ min
i,j∈{0..n}

I[Xi : Xj ]

common_information(dist, rvs=None, crvs=None, rv_names=None)
Returns the Gacs-Korner common information K[X1:X2...] over the random variables in rvs.

Parameters

• dist (Distribution) – The distribution from which the common information is calculated.

• rvs (list, None) – The indexes of the random variables for which the Gacs-Korner common
information is to be computed. If None, then the common information is calculated over all
random variables.

• crvs (list, None) – The indexes of the random variables to condition the common information
by. If none, than there is no conditioning.

• rv_names (bool, None) – If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random variable indexes. If None,
then the value True is used if the distribution has specified names for its random variables.

Returns K (float) – The Gacs-Korner common information of the distribution.

This next group of measures can not be represented on information diagrams, and can not really be directly compared
to the measures above:

4.8. Gács-Körner Common Information 25
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4.9 Perplexity

The perplexity is a trivial measure to make the entropy more intuitive.

P[X] = 2H[X]

The perplexity of a random variable is the size of a uniform distribution that would have the same entropy. For example,
a distribution with 2 bits of entropy has a perplexity of 4, and so could be said to be “as random” as a four-sided die.

The conditional perplexity is defined in the natural way:

P[X|Y ] = 2H[X|Y ]

perplexity(dist, rvs=None, crvs=None, rv_names=None)

Parameters

• dist (Distribution) – The distribution from which the perplexity is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the perplexity. If
None, then the perpelxity is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then no
variables are condition on.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns P (float) – The perplexity.

4.10 Extropy

The extropy [7] is a dual to the entropy.

extropy(dist, rvs=None, rv_names=None)
Returns the extropy J[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the extropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution or float) – The distribution from which the extropy is calculated. If a float,
then we calculate the binary extropy.

• rvs (list, None) – The indexes of the random variable used to calculate the extropy. If
None, then the extropy is calculated over all random variables. This should remain None for
ScalarDistributions.

• rv_names (bool) – If True, then the elements of rvs are treated as random variable names.
If False, then the elements of rvs are treated as random variable indexes. If None, then the
value True is used if the distribution has specified names for its random variables.

Returns J (float) – The extropy of the distribution.

There are also measures of “distance” or divergence:

26 Chapter 4. Information Measures
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4.11 Jensen-Shannon Divergence

The Jensen-Shannon divergence is a principled divergence measure which is always finite.

jensen_shannon_divergence(dists, weights=None)
The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).

Parameters

• dists ([Distribution]) – The distributions, P_i, to take the Jensen-Shannon Divergence of.

• weights ([float], None) – The weights, w_i, to give the distributions. If None, the weights
are assumed to be uniform.

Returns jsd (float) – The Jensen-Shannon Divergence

Raises

• ditException – Raised if there dists and weights have unequal lengths.

• InvalidNormalization – Raised if the weights do not sum to unity.

• InvalidProbability – Raised if the weights are not valid probabilities.

4.11. Jensen-Shannon Divergence 27
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