

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dit 1.0 documentation

dit: discrete information theory

dit is the python module for all your discrete information theory needs.

Contents:

	Basic Usage

	Notation
	Basic Notation

	Advanced Notation

	Distributions
	Numpy-based ScalarDistribution

	Numpy-based Distribution

	Information Measures
	Basic Shannon measures

	Entropy

	Co-Information

	Total Correlation

	Binding Information

	Residual Entropy

	Interaction Information

	Gács-Körner Common Information

	Perplexity

	Extropy

	Jensen-Shannon Divergence

	References

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

Basic Usage

The basic usage of dit corresponds to creating distributions, modifying
them if need be, and then computing properties of those distributions. For
example:

>>> from dit.example_dists import Xor
>>> from dit.algorithms import entropy
>>> d = Xor()
>>> print(d)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 0.25
011 0.25
101 0.25
110 0.25
>>> print(entropy(d))
2.0

Here, we imported an example distribution constructor (that of the logical
exclusive or) and the entropy function. Then we instantiated the XOR
distribution, printed it, and computed its entropy.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

Notation

dit is a scientific tool, and so, much of this documentation will contain
mathematical expressions. Here we will describe this notation.

Basic Notation

Many distributions are joint distribution. In the absence of variable names,
we index each random variable with a subscript. For example, a distribution
over three variables is written \(X_0X_1X_2\). As a shorthand, we also
denote those random variables as \(X_{0:3}\), meaning start with
\(X_0\) and go through, but not including \(X_3\) — just like python
slice notation.

If we ever need to describe an infinitely long chain of
variables we drop the index from the side that is infinite. So
\(X_{:0} = \ldots X_{-3}X_{-2}X_{-1}\) and \(X_{0:} = X_0X_1X_2\ldots\).
For an arbitrary set of indices \(A\), the corresponding collection of
random variables is denoted \(X_A\). For example, if \(A = \{0,2,4\}\),
then \(X_A = X_0 X_2 X_4\). The complement of \(A\)
(with respect to some universal set) is denoted \(\bar{A}\).

Advanced Notation

When there exists a function \(Y = f(X)\) we write \(X \imore Y\)
meaning that \(X\) is informationally richer than \(Y\). Similarly, if
\(f(Y) = X\) then we write \(X \iless Y\) and say that \(X\) is
informationally poorer than \(Y\). Of all the variables that are poorer
than both \(X\) and \(Y\), there is a richest one. This variable is
known as the meet of \(X\) and \(Y\) and is denoted \(X \meet Y\).
By definition, \(\forall Z s.t. Z \iless X\) and \(Z \iless Y, Z \iless
X \meet Y\). Similarly of all variables richer than both \(X\) and \(Y\),
there is a poorest. This variable is known as the join of \(X\) and
\(Y\) and is denoted \(X \join Y\). The joint random variable
\((X,Y)\) is equivalent to the join.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

Distributions

Here we describe how to create, modify, and manipulate distribution objects.

Numpy-based ScalarDistribution

ScalarDistribution specific stuff.

Numpy-based Distribution

Distribution specific stuff.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

Information Measures

dit supports many information measures, ranging from as standard as the
Shannon entropy to as exotic as Gács-Körner common information (with even more
esoteric measure coming soon!). We organize these quantities into the following
groups.

We first have the Shannon-like measures. These quantities are based on sums and
differences of entropies, conditional entropies, or mutual informations of
random variables:

	Basic Shannon measures
	Entropy

	Conditional Entropy

	Mutual Information

	Entropy

	Co-Information

	Total Correlation

	Binding Information

	Residual Entropy

The next group of measures are Shannon-esque measures. These are measure that,
while not quite based directly on the canonical Shannon measures like above,
they are directly comparable and can be expressed on information-diagrams:

	Interaction Information

	Gács-Körner Common Information
	The Common Information Game

	Two Variables

	\(n\)-Variables

This next group of measures can not be represented on information diagrams, and
can not really be directly compared to the measures above:

	Perplexity

	Extropy

There are also measures of “distance” or divergence:

	Jensen-Shannon Divergence

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Basic Shannon measures

The information on this page is drawn from [3].

Entropy

The entropy measures how much information is in a random variable \(X\).

\[\H[X] = - \sum_{x \in X} p(x) \log_2 p(x)\]

	
entropy(dist, rvs=None, rv_names=None)[source]

	Returns the entropy H[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the entropy
is calculated with units of ‘bits’ (base-2).

	Parameters :	
	dist (Distribution or float) –
The distribution from which the entropy is calculated. If a float,
then we calculate the binary entropy.

	rvs (list, None) –
The indexes of the random variable used to calculate the entropy.
If None, then the entropy is calculated over all random variables.
This should remain None for ScalarDistributions.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	H (float) –
The entropy of the distribution.

Conditional Entropy

The conditional entropy is the amount of information in variable \(X\)
beyond that which is in variable \(Y\).

\[\H[X|Y] = \sum_{x \in X, y \in Y} p(x, y) \log_2 p(x|y)\]

	
conditional_entropy(dist, rvs_X, rvs_Y, rv_names=None)[source]

	Returns the conditional entropy of H[X|Y].

If the distribution represents linear probabilities, then the entropy
is calculated with units of ‘bits’ (base-2).

	Parameters :	
	dist (Distribution) –
The distribution from which the conditional entropy is calculated.

	rvs_X (list, None) –
The indexes of the random variables defining X.

	rvs_Y (list, None) –
The indexes of the random variables defining Y.

	rv_names (bool) –
If True, then the elements of rvs_X and rvs_Y are treated as
random variable names. If False, then their elements are treated as
random variable indexes. If None, then the value True is used if
the distribution has specified names for its random variables.

	Returns:	H_XgY (float) –
The conditional entropy H[X|Y].

Mutual Information

The mutual information is the amount of information shared by \(X\) and
\(Y\).

\[\begin{split}\I[X:Y] &= \H[X,Y] - \H[X|Y] - \H[Y|X] \\
 &= \H[X] + \H[Y] - \H[X,Y] \\
 &= \sum_{x \in X, y \in Y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}\end{split}\]

	
mutual_information(dist, rvs_X, rvs_Y, rv_names=None)[source]

	Returns the mutual information I[X:Y].

If the distribution represents linear probabilities, then the entropy
is calculated with units of ‘bits’ (base-2).

	Parameters :	
	dist (Distribution) –
The distribution from which the mutual information is calculated.

	rvs_X (list, None) –
The indexes of the random variables defining X.

	rvs_Y (list, None) –
The indexes of the random variables defining Y.

	rv_names (bool) –
If True, then the elements of rvs_X and rvs_Y are treated as
random variable names. If False, then their elements are treated as
random variable indexes. If None, then the value True is used if
the distribution has specified names for its random variables.

	Returns:	I (float) –
The mutual information I[X:Y].

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Entropy

This is a general entropy function, handling conditional joint entropy.

[image: The entropy :math:`\H[X,Y]`]
[image: The entropy :math:`\H[X,Y,Z]`]

	
entropy2(dist, rvs=None, crvs=None, rv_names=None)[source]

	Compute the conditional joint entropy.

	Parameters :	
	dist (Distribution) –
The distribution from which the entropy is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the entropy. If
None, then the entropy is calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	H (float) –
The entropy.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Co-Information

The co-information [2] is one generalization of the mutual information to multiple
variables. It is defined via an inclusion/exclusion sum:

\[\begin{split}\I[X_{0:n}] &= -\sum_{y \in \mathcal{P}(\{0..n\})} (-1)^{|y|} \H[X_y] \\
 &= \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \prod_{y \in \mathcal{P}(\{0..n\})} p(y)^{(-1)^{|y|}}\end{split}\]

[image: The co-information :math:`\I[X:Y]`]
[image: The co-information :math:`\I[X:Y:Z]`]

	
coinformation(dist, rvs=None, crvs=None, rv_names=None)[source]

	Calculates the coinformation.

	Parameters :	
	dist (Distribution) –
The distribution from which the coinformation is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the coinformation
between. If None, then the coinformation is calculated over all random
variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	I (float) –
The coinformation.

	Raises :	ditException –
Raised if dist is not a joint distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Total Correlation

The total correlation [8], denoted \(\T\), also known as
the multi-information or integration, is one generalization of the mutual
information. It is defined as the amount of information each individual variable
carries above and beyond the joint entropy:

\[\begin{split}\T[X_{0:n}] &= \sum \H[X_i] - \H[X_{0:n}] \\
 &= \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \frac{p(x_{0:n})}{\prod p(x_i)}\end{split}\]

Two nice features of the total correlation are that it is non-negative and that
it is zero if and only if the random variables \(X_{0:n}\) are all
independent. Some baseline behavior is good to note also. First its behavior
when applied to “giant bit” distributions:

>>> from dit import Distribution as D
>>> from dit.algorithms import total_correlation as T
>>> [T(D(['0'*n, '1'*n], [0.5, 0.5])) for n in range(2, 6)]
[1.0, 2.0, 3.0, 4.0]

So we see that for giant bit distributions, the total correlation is equal to
one less than the number of variables. The second type of distribution to
consider is general parity distributions:

>>> from dit.example_dists import n_mod_m
>>> [T(n_mod_m(n, 2)) for n in range(3, 6)]
[1.0, 1.0, 1.0]
>>> [T(n_mod_m(3, m)) for m in range(2, 5)]
[1.0, 1.58496250072, 2.0]

Here we see that the total correlation is equal to \(\log_2{m}\) regardless
of \(n\).

[image: The total correlation :math:`\T[X:Y]`]
[image: The total correlation :math:`\T[X:Y:Z]`]

	
total_correlation(dist, rvs=None, crvs=None, rv_names=None)[source]

	

	Parameters :	
	dist (Distribution) –
The distribution from which the total correlation is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the total
correlation. If None, then the total correlation is calculated
over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool, None) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	T (float) –
The total correlation

	Raises :	ditException –
Raised if dist is not a joint distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Binding Information

The binding information [1], or dual total correlation, is yet
another generalization of the mutual information. It is defined as:

\[\begin{split}\B[X_{0:n}] &= \H[X_{0:n}] - \sum \H[X_i | X_{\{0..n\}/i}] \\
 &= - \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \frac{p(x_{0:n})}{\prod p(x_i|x_{\{0:n\}/i})}\end{split}\]

[image: The binding information :math:`\B[X:Y]`]
[image: The binding information :math:`\B[X:Y:Z]`]

	
binding_information(dist, rvs=None, crvs=None, rv_names=None)[source]

	

	Parameters :	
	dist (Distribution) –
The distribution from which the binding information is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the binding
information. If None, then the binding information is calculated
over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	B (float) –
The binding information

	Raises :	ditException –
Raised if dist is not a joint distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Residual Entropy

The residual entropy, or erasure entropy, is a dual to the binding information.

\[\begin{split}\R[X_{0:n}] &= \sum \H[X_i | X_{\{0..n\}/i}] \\
 &= - \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \prod p(x_i|x_{\{0:n\}/i})\end{split}\]

[image: The residual entropy :math:`\R[X:Y]`]
[image: The residual entropy :math:`\R[X:Y:Z]`]

	
residual_entropy(dist, rvs=None, crvs=None, rv_names=None)[source]

	

	Parameters :	
	dist (Distribution) –
The distribution from which the residual entropy is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the residual
entropy. If None, then the total correlation is calculated
over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	R (float) –
The residual entropy

	Raises :	ditException –
Raised if dist is not a joint distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Interaction Information

The interaction information is equal in magnitude to the co-information, but
has the opposite sign when taken over an odd number of variables:

\[\begin{split}\II(X_{0:n}) &= (-1)^{n} \cdot \I(X_{0:n})\end{split}\]

Interaction information was first studied in the 3-variable case which, for
\(X_{0:3} = X_0X_1X_2\), takes the following form:

\[\II(X_0:X_1:X_2) = \I(X_0:X_1|X_2) - \I(X_0:X_1)\]

The extension to \(n>3\) proceeds recursively. For example,

\[\begin{split}\II(X_0:X_1:X_2:X_3)
 &= \II(X_0:X_1:X_2|X_3) - \II(X_0:X_1:X_2) \\
 &= \I(X_0:X_1|X_2,X_3) - \I(X_0:X_1|X_3) \\
 &\qquad - \I(X_0:X_1|X_2) + \I(X_0:X_1)\end{split}\]

	
interaction_information(dist, rvs=None, crvs=None, rv_names=None)[source]

	Calculates the interaction information.

	Parameters :	
	dist (Distribution) –
The distribution from which the interaction information is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the interaction
information between. If None, then the interaction information is
calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	II (float) –
The interaction information.

	Raises :	ditException –
Raised if dist is not a joint distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Gács-Körner Common Information

The Gács-Körner common information [5] take a very direct approach
to the idea of common information. It extracts a random variable that is
contained within each of the random variables under consideration.

The Common Information Game

Let’s play a game. We have an n-variable joint distribution, and one player for
each variable. Each player is given the probability mass function of the joint
distribution then isolated from each other. Each round of the game the a joint
outcome is generated from the distribution and each player is told the symbol
that their particular variable took. The goal of the game is for the players to
simultaneously write the same symbol on a piece of paper, and for the entropy of
the players’ symbols to be maximized. They must do this using only their
knowledge of the joint random variable and the particular outcome of their
marginal variable. The matching symbols produced by the players are called the
common random variable and the entropy of that variable is the Gács-Körner
common information, \(\K\).

Two Variables

Consider a joint distribution over \(X_0\) and \(X_1\). Given any
particular outcome from that joint, we want a function \(f(X_0)\) and a
function \(g(X_1)\) such that \(\forall x_0x_1 = X_0X_1, f(x_0) =
g(x_1) = v\). Of all possible pairs of functions \(f(X_0) = g(X_1) = V\),
there exists a “largest” one, and it is known as the common random variable. The
entropy of that common random variable is the Gács-Körner common information:

\[\begin{split}\K[X_0 : X_1] &= \max_{f(X_0) = g(X_1) = V} \H[V] \\
 &= \H[X_0 \meet X_1]\end{split}\]

[image: The Gács-Körner common information :math:`\K[X:Y]`]
As a canonical example, consider the following:

>>> from __future__ import division
>>> from dit import Distribution as D
>>> from dit.algorithms import common_information as K
>>> outcomes = ['00', '01', '10', '11', '22', '33']
>>> pmf = [1/8, 1/8, 1/8, 1/8, 1/4, 1/4]
>>> d = D(outcomes, pmf)
>>> K(d)
1.5

So, the Gács-Körner common information is 1.5 bits. But what is the common
random variable?

>>> from dit.algorithms import insert_meet
>>> crv = insert_meet(d, -1, [[0],[1]])
>>> print(crv)
Class: Distribution
Alphabet: (('0', '1', '2', '3'), ('0', '1', '2', '3'), ('2', '0', '1'))
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
002 0.125
012 0.125
102 0.125
112 0.125
220 0.25
331 0.25

Looking at the third index of the outcomes, we see that the common random
variable maps 2 to 0 and 3 to 1, maintaining the information from those values.
When \(X_0\) or \(X_1\) are either 0 or 1, however, it maps them to 2.
This is because \(f\) and \(g\) must act independently: if \(x_0\)
is a 0 or a 1, there is no way to know if \(x_1\) is a 0 or a 1 and vice
versa. Therefore we aggregate 0s and 1s into 2.

Properties & Uses

The Gács-Körner common information satisfies an important inequality:

\[0 \leq \K[X_0:X_1] \leq \I[X_0:X_1]\]

One usage of the common information is as a measure of redundancy
[4]. Consider a function that takes two inputs, \(X_0\) and
\(X_1\), and produces a single output \(Y\). The output can be
influenced redundantly by both inputs, uniquely from either one, or together
they can synergistically influence the output. Determining how to compute the
amount of redundancy is an open problem, but one proposal is:

\[\I[X_0 \meet X_1 : Y]\]

[image: The zero-error redundancy :math:`\K[X\meetY:Z]`]
This quantity can be computed easily using dit:

>>> from dit.example_dists import RdnXor
>>> from dit.algorithms import insert_meet, mutual_information as I
>>> d = RdnXor()
>>> d = insert_meet(d, -1, [[0], [1]])
>>> I(d, [3], [2])
1.0

\(n\)-Variables

With an arbitrary number of variables, the Gács-Körner common information is
defined similarly:

\[\begin{split}\K[X_0 : \ldots : X_n] &= \max_{\substack{V = f_0(X_0) \\ \vdots \\ V = f_n(X_n)}} \H[V] \\
 &= \H[X_0 \meet \ldots \meet X_n]\end{split}\]

The common information is a monotonically decreasing function:

\[\K[X_0 : \ldots : X_{n-1}] \ge \K[X_0 : \ldots : X_n]\]

The multivariate common information follows a similar inequality as the two
variate version:

\[0 \leq \K[X_0 : \dots : X_n] \leq \min_{i, j \in \{0..n\}} \I[X_i : X_j]\]

[image: The Gács-Körner common information :math:`\K[X:Y:Z]`]

	
common_information(dist, rvs=None, crvs=None, rv_names=None)[source]

	Returns the Gacs-Korner common information K[X1:X2...] over the random
variables in rvs.

	Parameters :	
	dist (Distribution) –
The distribution from which the common information is calculated.

	rvs (list, None) –
The indexes of the random variables for which the Gacs-Korner common
information is to be computed. If None, then the common information is
calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition the common information
by. If none, than there is no conditioning.

	rv_names (bool, None) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	K (float) –
The Gacs-Korner common information of the distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Perplexity

The perplexity is a trivial measure to make the entropy more intuitive.

\[\P[X] = 2^{\H[X]}\]

The perplexity of a random variable is the size of a uniform distribution that
would have the same entropy. For example, a distribution with 2 bits of entropy
has a perplexity of 4, and so could be said to be “as random” as a four-sided
die.

The conditional perplexity is defined in the natural way:

\[\P[X|Y] = 2^{\H[X|Y]}\]

	
perplexity(dist, rvs=None, crvs=None, rv_names=None)[source]

	

	Parameters :	
	dist (Distribution) –
The distribution from which the perplexity is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the perplexity.
If None, then the perpelxity is calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	P (float) –
The perplexity.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Extropy

The extropy [7] is a dual to the entropy.

	
extropy(dist, rvs=None, rv_names=None)[source]

	Returns the extropy J[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the extropy
is calculated with units of ‘bits’ (base-2).

	Parameters :	
	dist (Distribution or float) –
The distribution from which the extropy is calculated. If a float,
then we calculate the binary extropy.

	rvs (list, None) –
The indexes of the random variable used to calculate the extropy.
If None, then the extropy is calculated over all random variables.
This should remain None for ScalarDistributions.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes. If None, then the value True is used if the
distribution has specified names for its random variables.

	Returns:	J (float) –
The extropy of the distribution.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dit 1.0 documentation

 	Information Measures

Jensen-Shannon Divergence

The Jensen-Shannon divergence is a principled divergence measure which is always
finite.

	
jensen_shannon_divergence(dists, weights=None)[source]

	The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).

	Parameters :	
	dists ([Distribution]) –
The distributions, P_i, to take the Jensen-Shannon Divergence of.

	weights ([float], None) –
The weights, w_i, to give the distributions. If None, the weights are
assumed to be uniform.

	Returns:	jsd (float) –
The Jensen-Shannon Divergence

	Raises :	
	ditException –
Raised if there dists and weights have unequal lengths.

	InvalidNormalization –
Raised if the weights do not sum to unity.

	InvalidProbability –
Raised if the weights are not valid probabilities.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dit 1.0 documentation

References

	[1]	SamerA Abdallah and MarkD Plumbley. A measure of statistical complexity based on predictive information with application to finite spin systems. Physics Letters A, 376(4):275–281, January 2012.

	[2]	AnthonyJ Bell. The Co-Information Lattice. Springer, New York, ica 2003 edition, 2003.

	[3]	ThomasM. Cover and JoyA. Thomas. Elements of Information Theory. Wiley-Interscience, New York, second edition, 2006.

	[4]	Virgil Griffith, EdwinKP Chong, RyanG James, ChristopherJ Ellison, and JamesP Crutchfield. Intersection information based on common randomness. arXiv preprint arXiv:1310.1538, 2013.

	[5]	Peter Gács and János Körner. Common information is far less than mutual information. Problems of Control and Information Theory, 2(2):149–162, 1973.

	[6]	TeSun Han. Multiple mutual informations and multiple interactions in frequency data. Information and Control, 46(1):26–45, July 1980.

	[7]	Frank Lad, Giuseppe Sanfilippo, and Gianna Agrò. Extropy: a complementary dual of entropy. arXiv preprint arXiv:1109.6440, 2011.

	[8]	Satosi Watanabe. Information Theoretical Analysis of Multivariate Correlation. IBM Journal of Research and Development, 4(1):66–82, January 1960.

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	dit 1.0 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dit	

 	
 	
 dit.algorithms.binding	

 	
 	
 dit.algorithms.coinformation	

 	
 	
 dit.algorithms.common_information	

 	
 	
 dit.algorithms.entropy2	

 	
 	
 dit.algorithms.extropy	

 	
 	
 dit.algorithms.interaction_information	

 	
 	
 dit.algorithms.jsd	

 	
 	
 dit.algorithms.perplexity	

 	
 	
 dit.algorithms.shannon	

 	
 	
 dit.algorithms.total_correlation	

 	
 	
 dit.distribution	

 	
 	
 dit.npdist	

 	
 	
 dit.npscalardist	

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	dit 1.0 documentation

Index

 B
 | C
 | D
 | E
 | I
 | J
 | M
 | P
 | R
 | T

B

 	

 	binding_information() (in module dit.algorithms.binding)

C

 	

 	coinformation() (in module dit.algorithms.coinformation)

 	common_information() (in module dit.algorithms.common_info)

 	

 	conditional_entropy() (in module dit.algorithms.shannon)

D

 	

 	dit.algorithms.binding (module), [1]

 	dit.algorithms.coinformation (module)

 	dit.algorithms.common_information (module)

 	dit.algorithms.entropy2 (module)

 	dit.algorithms.extropy (module)

 	dit.algorithms.interaction_information (module)

 	dit.algorithms.jsd (module)

 	

 	dit.algorithms.perplexity (module)

 	dit.algorithms.shannon (module)

 	dit.algorithms.total_correlation (module)

 	dit.distribution (module)

 	dit.npdist (module)

 	dit.npscalardist (module)

E

 	

 	entropy() (in module dit.algorithms.shannon)

 	entropy2() (in module dit.algorithms.entropy2)

 	

 	extropy() (in module dit.algorithms.extropy)

I

 	

 	interaction_information() (in module dit.algorithms.interaction_information)

J

 	

 	jensen_shannon_divergence() (in module dit.algorithms.jsd)

M

 	

 	mutual_information() (in module dit.algorithms.shannon)

P

 	

 	perplexity() (in module dit.algorithms.perplexity)

R

 	

 	residual_entropy() (in module dit.algorithms.binding)

T

 	

 	total_correlation() (in module dit.algorithms.total_correlation)

 Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

 _modules/dit/algorithms/perplexity.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.perplexity

"""
The perplexity of a distribution.
"""

from .shannon import conditional_entropy, entropy
from ..utils.misc import flatten

[docs]def perplexity(dist, rvs=None, crvs=None, rv_names=None):
 """
 Parameters

 dist : Distribution
 The distribution from which the perplexity is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the perplexity.
 If None, then the perpelxity is calculated over all random variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 P : float
 The perplexity.
 """

 base = dist.get_base(numerical=True) if dist.is_log() else 2

 if dist.is_joint():
 if rvs is None:
 # Set to entropy of entire distribution
 rvs = list(range(dist.outcome_length()))
 rv_names = False
 else:
 # this will allow inputs of the form [0, 1, 2] or [[0, 1], [2]],
 # allowing uniform behavior with the mutual information like
 # measures.
 rvs = set(flatten(rvs))
 if crvs is None:
 crvs = []
 else:
 return base**entropy(dist)

 return base**conditional_entropy(dist, rvs, crvs, rv_names)

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/r_xyz.png
R[X:Y:Z]

_modules/dit/algorithms/binding.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.binding

"""
The binding information and residual entropy.
"""

from .shannon import conditional_entropy as H
from ..helpers import normalize_rvs

[docs]def binding_information(dist, rvs=None, crvs=None, rv_names=None):
 """
 Parameters

 dist : Distribution
 The distribution from which the binding information is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the binding
 information. If None, then the binding information is calculated
 over all random variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 B : float
 The binding information

 Raises

 ditException
 Raised if `dist` is not a joint distribution.
 """
 rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

 others = lambda rv, rvs: set(set().union(*rvs)) - set(rv)

 one = H(dist, set().union(*rvs), crvs, rv_names)
 two = sum(H(dist, rv, others(rv, rvs).union(crvs), rv_names) for rv in rvs)
 B = one - two

 return B

[docs]def residual_entropy(dist, rvs=None, crvs=None, rv_names=None):
 """
 Parameters

 dist : Distribution
 The distribution from which the residual entropy is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the residual
 entropy. If None, then the total correlation is calculated
 over all random variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 R : float
 The residual entropy

 Raises

 ditException
 Raised if `dist` is not a joint distribution.
 """
 rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

 others = lambda rv, rvs: set(set().union(*rvs)) - set(rv)

 R = sum(H(dist, rv, others(rv, rvs).union(crvs), rv_names) for rv in rvs)

 return R

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/t_xyz.png
TX:Y:Z]

_static/minus.png

_modules/dit/algorithms/coinformation.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.coinformation

"""
The co-information aka the multivariate mututal information.
"""

from iterutils import powerset

from ..helpers import normalize_rvs
from .shannon import conditional_entropy as H

[docs]def coinformation(dist, rvs=None, crvs=None, rv_names=None):
 """
 Calculates the coinformation.

 Parameters

 dist : Distribution
 The distribution from which the coinformation is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the coinformation
 between. If None, then the coinformation is calculated over all random
 variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 I : float
 The coinformation.

 Raises

 ditException
 Raised if `dist` is not a joint distribution.
 """
 rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

 def entropy(rvs, dist=dist, crvs=crvs, rv_names=rv_names):
 """
 Helper function to aid in computing the entropy of subsets.
 """
 return H(dist, set().union(*rvs), crvs, rv_names)

 I = sum((-1)**(len(Xs)+1) * entropy(Xs) for Xs in powerset(rvs))

 return I

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/b_xy.png
BX : Y]

Y

search.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/red_xy.png
I[XAY:Z]

_static/comment-close.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 All modules for which code is available

		dit.algorithms.binding

		dit.algorithms.coinformation

		dit.algorithms.common_info

		dit.algorithms.entropy2

		dit.algorithms.extropy

		dit.algorithms.interaction_information

		dit.algorithms.jsd

		dit.algorithms.perplexity

		dit.algorithms.shannon

		dit.algorithms.total_correlation

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/h_xy.png

_static/down.png

_images/k_xyz.png

_static/comment.png

_images/i_xyz.png
I[X:Y:Z]

_modules/dit/algorithms/shannon.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.shannon

"""
Some basic Shannon information quantities.

This will be replaced with something better later.

"""

from ..math import LogOperations

import numpy as np

[docs]def entropy(dist, rvs=None, rv_names=None):
 """
 Returns the entropy H[X] over the random variables in `rvs`.

 If the distribution represents linear probabilities, then the entropy
 is calculated with units of 'bits' (base-2).

 Parameters

 dist : Distribution or float
 The distribution from which the entropy is calculated. If a float,
 then we calculate the binary entropy.
 rvs : list, None
 The indexes of the random variable used to calculate the entropy.
 If None, then the entropy is calculated over all random variables.
 This should remain `None` for ScalarDistributions.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 H : float
 The entropy of the distribution.

 """
 try:
 # Handle binary entropy.
 float(dist)
 except TypeError:
 pass
 else:
 # Assume linear probability for binary entropy.
 import dit
 dist = dit.ScalarDistribution([dist, 1-dist])
 rvs = None
 rv_names = False

 if dist.is_joint():
 if rvs is None:
 # Set to entropy of entire distribution
 rvs = range(dist.outcome_length())
 rv_names = False

 d = dist.marginal(rvs, rv_names=rv_names)
 else:
 d = dist

 pmf = d.pmf
 if d.is_log():
 base = d.get_base(numerical=True)
 terms = -base**pmf * pmf
 else:
 # Calculate entropy in bits.
 log = LogOperations(2).log
 terms = -pmf * log(pmf)

 H = np.nansum(terms)
 return H

[docs]def conditional_entropy(dist, rvs_X, rvs_Y, rv_names=None):
 """
 Returns the conditional entropy of H[X|Y].

 If the distribution represents linear probabilities, then the entropy
 is calculated with units of 'bits' (base-2).

 Parameters

 dist : Distribution
 The distribution from which the conditional entropy is calculated.
 rvs_X : list, None
 The indexes of the random variables defining X.
 rvs_Y : list, None
 The indexes of the random variables defining Y.
 rv_names : bool
 If `True`, then the elements of `rvs_X` and `rvs_Y` are treated as
 random variable names. If `False`, then their elements are treated as
 random variable indexes. If `None`, then the value `True` is used if
 the distribution has specified names for its random variables.

 Returns

 H_XgY : float
 The conditional entropy H[X|Y].

 """
 if set(rvs_X).issubset(rvs_Y):
 # This is not necessary, but it makes the answer *exactly* zero,
 # instead of 1e-12 or something smaller.
 return 0.0

 MI_XY = mutual_information(dist, rvs_Y, rvs_X, rv_names)
 H_X = entropy(dist, rvs_X, rv_names)
 H_XgY = H_X - MI_XY
 return H_XgY

[docs]def mutual_information(dist, rvs_X, rvs_Y, rv_names=None):
 """
 Returns the mutual information I[X:Y].

 If the distribution represents linear probabilities, then the entropy
 is calculated with units of 'bits' (base-2).

 Parameters

 dist : Distribution
 The distribution from which the mutual information is calculated.
 rvs_X : list, None
 The indexes of the random variables defining X.
 rvs_Y : list, None
 The indexes of the random variables defining Y.
 rv_names : bool
 If `True`, then the elements of `rvs_X` and `rvs_Y` are treated as
 random variable names. If `False`, then their elements are treated as
 random variable indexes. If `None`, then the value `True` is used if
 the distribution has specified names for its random variables.

 Returns

 I : float
 The mutual information I[X:Y].

 """
 H_X = entropy(dist, rvs_X, rv_names)
 H_Y = entropy(dist, rvs_Y, rv_names)
 # Make sure to union the indexes. This handles the case when X and Y
 # do not partition the set of all indexes.
 H_XY = entropy(dist, set(rvs_X) | set(rvs_Y), rv_names)
 I = H_X + H_Y - H_XY
 return I

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_static/ajax-loader.gif

_modules/dit/algorithms/interaction_information.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.interaction_information

"""
The interaction information is a form of multivariate information.
"""

from ..helpers import normalize_rvs

from .coinformation import coinformation

[docs]def interaction_information(dist, rvs=None, crvs=None, rv_names=None):
 """
 Calculates the interaction information.

 Parameters

 dist : Distribution
 The distribution from which the interaction information is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the interaction
 information between. If None, then the interaction information is
 calculated over all random variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 II : float
 The interaction information.

 Raises

 ditException
 Raised if `dist` is not a joint distribution.
 """
 rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

 II = (-1)**len(rvs) * coinformation(dist, rvs, crvs, rv_names)

 return II

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_static/file.png

_modules/dit/algorithms/entropy2.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.entropy2

"""
A version of the entropy with signature common to the other multivariate
measures.
"""

from .shannon import conditional_entropy, entropy

[docs]def entropy2(dist, rvs=None, crvs=None, rv_names=None):
 """
 Compute the conditional joint entropy.

 Parameters

 dist : Distribution
 The distribution from which the entropy is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the entropy. If
 None, then the entropy is calculated over all random variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 H : float
 The entropy.
 """
 if dist.is_joint():
 if rvs is None:
 # Set to entropy of entire distribution
 rvs = list(range(dist.outcome_length()))
 rv_names = False
 if crvs is None:
 crvs = []
 else:
 return entropy(dist)

 return conditional_entropy(dist, rvs, crvs, rv_names)

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

_images/t_xy.png
T(X : Y]

Y

_static/comment-bright.png

_modules/dit/algorithms/total_correlation.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.total_correlation

"""
The total correlation, aka the multi-information or the integration.
"""

from ..helpers import normalize_rvs
from .shannon import conditional_entropy as H

[docs]def total_correlation(dist, rvs=None, crvs=None, rv_names=None):
 """
 Parameters

 dist : Distribution
 The distribution from which the total correlation is calculated.
 rvs : list, None
 The indexes of the random variable used to calculate the total
 correlation. If None, then the total correlation is calculated
 over all random variables.
 crvs : list, None
 The indexes of the random variables to condition on. If None, then no
 variables are condition on.
 rv_names : bool, None
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 T : float
 The total correlation

 Raises

 ditException
 Raised if `dist` is not a joint distribution.
 """
 rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

 one = sum([H(dist, rv, crvs, rv_names) for rv in rvs])
 two = H(dist, set().union(*rvs), crvs, rv_names)
 T = one - two

 return T

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_modules/dit/algorithms/common_info.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.common_info

"""
Compute the Gacs-Korner common information
"""

from ..helpers import normalize_rvs, parse_rvs
from ..npdist import Distribution
from .lattice import insert_meet
from .shannon import conditional_entropy as H

[docs]def common_information(dist, rvs=None, crvs=None, rv_names=None):
 """
 Returns the Gacs-Korner common information K[X1:X2...] over the random
 variables in `rvs`.

 Parameters

 dist : Distribution
 The distribution from which the common information is calculated.
 rvs : list, None
 The indexes of the random variables for which the Gacs-Korner common
 information is to be computed. If None, then the common information is
 calculated over all random variables.
 crvs : list, None
 The indexes of the random variables to condition the common information
 by. If none, than there is no conditioning.
 rv_names : bool, None
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 K : float
 The Gacs-Korner common information of the distribution.

 """
 rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)
 crvs = parse_rvs(dist, crvs, rv_names)[1]

 outcomes, pmf = zip(*dist.zipped(mode='patoms'))
 d = Distribution(outcomes, pmf)
 d.set_rv_names(dist.get_rv_names())

 d2 = insert_meet(d, -1, rvs, rv_names)

 common = [d2.outcome_length() - 1]

 K = H(d2, common, crvs)

 return K

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/r_xy.png
R[X :Y]

_images/b_xyz.png
B[X:Y:Z]

_static/up.png

_images/i_xy.png
I[X :Y]

Y

_static/plus.png

_images/k_xy.png
K[X : Y]

Y

_modules/dit/algorithms/extropy.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.extropy

"""
The extropy
"""

from ..math.ops import LogOperations

import numpy as np

[docs]def extropy(dist, rvs=None, rv_names=None):
 """
 Returns the extropy J[X] over the random variables in `rvs`.

 If the distribution represents linear probabilities, then the extropy
 is calculated with units of 'bits' (base-2).

 Parameters

 dist : Distribution or float
 The distribution from which the extropy is calculated. If a float,
 then we calculate the binary extropy.
 rvs : list, None
 The indexes of the random variable used to calculate the extropy.
 If None, then the extropy is calculated over all random variables.
 This should remain `None` for ScalarDistributions.
 rv_names : bool
 If `True`, then the elements of `rvs` are treated as random variable
 names. If `False`, then the elements of `rvs` are treated as random
 variable indexes. If `None`, then the value `True` is used if the
 distribution has specified names for its random variables.

 Returns

 J : float
 The extropy of the distribution.

 """
 try:
 # Handle binary extropy.
 float(dist)
 except TypeError:
 pass
 else:
 # Assume linear probability for binary extropy.
 import dit
 dist = dit.ScalarDistribution([dist, 1-dist])
 rvs = None
 rv_names = False

 if dist.is_joint():
 if rvs is None:
 # Set to entropy of entire distribution
 rvs = list(range(dist.outcome_length()))
 rv_names = False

 d = dist.marginal(rvs, rv_names=rv_names)
 else:
 d = dist

 pmf = d.pmf
 if d.is_log():
 base = d.get_base(numerical=True)
 npmf = d.ops.log(1-d.ops.exp(pmf))
 terms = -base**npmf * npmf
 else:
 # Calculate entropy in bits.
 log = LogOperations(2).log
 npmf = 1 - pmf
 terms = -npmf * log(npmf)

 J = np.nansum(terms)
 return J

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_modules/dit/algorithms/jsd.html

 Navigation

 		
 index

 		
 modules |

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms.jsd

"""
The Jensen-Shannon Diverence.

This is a reasonable measure of distinguishablity between distribution.
"""

from __future__ import division

import numpy as np
from six.moves import zip # pylint: disable=redefined-builtin

from ..distconst import mixture_distribution
from .shannon import entropy as H

[docs]def jensen_shannon_divergence(dists, weights=None):
 """
 The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).

 Parameters

 dists: [Distribution]
 The distributions, P_i, to take the Jensen-Shannon Divergence of.

 weights: [float], None
 The weights, w_i, to give the distributions. If None, the weights are
 assumed to be uniform.

 Returns

 jsd: float
 The Jensen-Shannon Divergence

 Raises

 ditException
 Raised if there `dists` and `weights` have unequal lengths.
 InvalidNormalization
 Raised if the weights do not sum to unity.
 InvalidProbability
 Raised if the weights are not valid probabilities.
 """
 if weights is None:
 weights = np.array([1/len(dists)] * len(dists))

 # validation of `weights` is done in mixture_distribution,
 # so we don't need to worry about it for the second part.
 one = H(mixture_distribution(dists, weights, merge=True))
 two = sum(w*H(d) for w, d in zip(weights, dists))
 jsd = one - two
 return jsd

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_modules/dit/algorithms.html

 Navigation

 		
 index

 		dit 1.0 documentation »

 		Module code »

 Source code for dit.algorithms

"""
Implementations of various information measures.
"""

from .shannon import entropy, conditional_entropy, mutual_information
from .total_correlation import total_correlation
from .coinformation import coinformation
from .interaction_information import interaction_information
from .perplexity import perplexity
from .jsd import jensen_shannon_divergence
from .common_info import common_information
from .binding import binding_information, residual_entropy
from .lattice import insert_join, insert_meet
from .extropy import extropy
from .stats import mean, median, mode, standard_deviation, central_moment, \
 standard_moment

 © Copyright 2013, dit contributors.
 Created using Sphinx 1.1.3.

_images/h_xyz.png

