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dit: discrete information theory

dit is the python module for all your discrete information theory needs.
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Basic Usage

The basic usage of dit corresponds to creating distributions, modifying
them if need be, and then computing properties of those distributions. For
example:

>>> from dit.example_dists import Xor
>>> from dit.algorithms import entropy
>>> d = Xor()
>>> print(d)
Class:          Distribution
Alphabet:       ('0', '1') for all rvs
Base:           linear
Outcome Class:  str
Outcome Length: 3
RV Names:       None

x     p(x)
000   0.25
011   0.25
101   0.25
110   0.25
>>> print(entropy(d))
2.0





Here, we imported an example distribution constructor (that of the logical
exclusive or) and the entropy function. Then we instantiated the XOR
distribution, printed it, and computed its entropy.
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Notation

dit is a scientific tool, and so, much of this documentation will contain
mathematical expressions. Here we will describe this notation.


Basic Notation

Many distributions are joint distribution. In the absence of variable names,
we index each random variable with a subscript. For example, a distribution
over three variables is written \(X_0X_1X_2\). As a shorthand, we also
denote those random variables as \(X_{0:3}\), meaning start with
\(X_0\) and go through, but not including \(X_3\) — just like python
slice notation.

If we ever need to describe an infinitely long chain of
variables we drop the index from the side that is infinite. So
\(X_{:0} = \ldots X_{-3}X_{-2}X_{-1}\) and \(X_{0:} = X_0X_1X_2\ldots\).
For an arbitrary set of indices \(A\), the corresponding collection of
random variables is denoted \(X_A\). For example, if \(A = \{0,2,4\}\),
then \(X_A = X_0 X_2 X_4\). The complement of \(A\)
(with respect to some universal set) is denoted \(\bar{A}\).




Advanced Notation

When there exists a function \(Y = f(X)\) we write \(X \imore Y\)
meaning that \(X\) is informationally richer than \(Y\). Similarly, if
\(f(Y) = X\) then we write \(X \iless Y\) and say that \(X\) is
informationally poorer than \(Y\). Of all the variables that are poorer
than both \(X\) and \(Y\), there is a richest one. This variable is
known as the meet of \(X\) and \(Y\) and is denoted \(X \meet Y\).
By definition, \(\forall Z s.t. Z \iless X\) and \(Z \iless Y, Z \iless
X \meet Y\). Similarly of all variables richer than both \(X\) and \(Y\),
there is a poorest. This variable is known as the join of \(X\) and
\(Y\) and is denoted \(X \join Y\). The joint random variable
\((X,Y)\) is equivalent to the join.
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Distributions

Here we describe how to create, modify, and manipulate distribution objects.


Numpy-based ScalarDistribution

ScalarDistribution specific stuff.




Numpy-based Distribution

Distribution specific stuff.
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Information Measures

dit supports many information measures, ranging from as standard as the
Shannon entropy to as exotic as Gács-Körner common information (with even more
esoteric measure coming soon!). We organize these quantities into the following
groups.

We first have the Shannon-like measures. These quantities are based on sums and
differences of entropies, conditional entropies, or mutual informations of
random variables:



	Basic Shannon measures
	Entropy

	Conditional Entropy

	Mutual Information





	Entropy

	Co-Information

	Total Correlation

	Binding Information

	Residual Entropy





The next group of measures are Shannon-esque measures. These are measure that,
while not quite based directly on the canonical Shannon measures like above,
they are directly comparable and can be expressed on information-diagrams:



	Interaction Information

	Gács-Körner Common Information
	The Common Information Game

	Two Variables

	\(n\)-Variables









This next group of measures can not be represented on information diagrams, and
can not really be directly compared to the measures above:



	Perplexity

	Extropy





There are also measures of “distance” or divergence:



	Jensen-Shannon Divergence
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Basic Shannon measures

The information on this page is drawn from [3].


Entropy

The entropy measures how much information is in a random variable \(X\).


\[\H[X] = - \sum_{x \in X} p(x) \log_2 p(x)\]


	
entropy(dist, rvs=None, rv_names=None)[source]

	Returns the entropy H[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the entropy
is calculated with units of ‘bits’ (base-2).





	Parameters :	
	dist (Distribution or float) –
The distribution from which the entropy is calculated. If a float,
then we calculate the binary entropy.

	rvs (list, None) –
The indexes of the random variable used to calculate the entropy.
If None, then the entropy is calculated over all random variables.
This should remain None for ScalarDistributions.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	H (float) –
The entropy of the distribution.














Conditional Entropy

The conditional entropy is the amount of information in variable \(X\)
beyond that which is in variable \(Y\).


\[\H[X|Y] = \sum_{x \in X, y \in Y} p(x, y) \log_2 p(x|y)\]


	
conditional_entropy(dist, rvs_X, rvs_Y, rv_names=None)[source]

	Returns the conditional entropy of H[X|Y].

If the distribution represents linear probabilities, then the entropy
is calculated with units of ‘bits’ (base-2).





	Parameters :	
	dist (Distribution) –
The distribution from which the conditional entropy is calculated.

	rvs_X (list, None) –
The indexes of the random variables defining X.

	rvs_Y (list, None) –
The indexes of the random variables defining Y.

	rv_names (bool) –
If True, then the elements of rvs_X and rvs_Y are treated as
random variable names. If False, then their elements are treated as
random variable indexes.  If None, then the value True is used if
the distribution has specified names for its random variables.






	Returns:	H_XgY (float) –
The conditional entropy H[X|Y].














Mutual Information

The mutual information is the amount of information shared by \(X\) and
\(Y\).


\[\begin{split}\I[X:Y] &= \H[X,Y] - \H[X|Y] - \H[Y|X] \\
        &= \H[X] + \H[Y] - \H[X,Y] \\
        &= \sum_{x \in X, y \in Y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}\end{split}\]


	
mutual_information(dist, rvs_X, rvs_Y, rv_names=None)[source]

	Returns the mutual information I[X:Y].

If the distribution represents linear probabilities, then the entropy
is calculated with units of ‘bits’ (base-2).





	Parameters :	
	dist (Distribution) –
The distribution from which the mutual information is calculated.

	rvs_X (list, None) –
The indexes of the random variables defining X.

	rvs_Y (list, None) –
The indexes of the random variables defining Y.

	rv_names (bool) –
If True, then the elements of rvs_X and rvs_Y are treated as
random variable names. If False, then their elements are treated as
random variable indexes.  If None, then the value True is used if
the distribution has specified names for its random variables.






	Returns:	I (float) –
The mutual information I[X:Y].
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Entropy

This is a general entropy function, handling conditional joint entropy.

[image: The entropy :math:`\H[X,Y]`]
[image: The entropy :math:`\H[X,Y,Z]`]

	
entropy2(dist, rvs=None, crvs=None, rv_names=None)[source]

	Compute the conditional joint entropy.





	Parameters :	
	dist (Distribution) –
The distribution from which the entropy is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the entropy. If
None, then the entropy is calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	H (float) –
The entropy.
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Co-Information

The co-information [2] is one generalization of the mutual information to multiple
variables. It is defined via an inclusion/exclusion sum:


\[\begin{split}\I[X_{0:n}] &= -\sum_{y \in \mathcal{P}(\{0..n\})} (-1)^{|y|} \H[X_y] \\
            &= \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \prod_{y \in \mathcal{P}(\{0..n\})} p(y)^{(-1)^{|y|}}\end{split}\]

[image: The co-information :math:`\I[X:Y]`]
[image: The co-information :math:`\I[X:Y:Z]`]

	
coinformation(dist, rvs=None, crvs=None, rv_names=None)[source]

	Calculates the coinformation.





	Parameters :	
	dist (Distribution) –
The distribution from which the coinformation is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the coinformation
between. If None, then the coinformation is calculated over all random
variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	I (float) –
The coinformation.




	Raises :	ditException –
Raised if dist is not a joint distribution.
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Total Correlation

The total correlation [8], denoted \(\T\), also known as
the multi-information or integration, is one generalization of the mutual
information. It is defined as the amount of information each individual variable
carries above and beyond the joint entropy:


\[\begin{split}\T[X_{0:n}] &= \sum \H[X_i] - \H[X_{0:n}] \\
            &= \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \frac{p(x_{0:n})}{\prod p(x_i)}\end{split}\]

Two nice features of the total correlation are that it is non-negative and that
it is zero if and only if the random variables \(X_{0:n}\) are all
independent. Some baseline behavior is good to note also. First its behavior
when applied to “giant bit” distributions:

>>> from dit import Distribution as D
>>> from dit.algorithms import total_correlation as T
>>> [ T(D(['0'*n, '1'*n], [0.5, 0.5])) for n in range(2, 6) ]
[1.0, 2.0, 3.0, 4.0]





So we see that for giant bit distributions, the total correlation is equal to
one less than the number of variables. The second type of distribution to
consider is general parity distributions:

>>> from dit.example_dists import n_mod_m
>>> [ T(n_mod_m(n, 2)) for n in range(3, 6) ]
[1.0, 1.0, 1.0]
>>> [ T(n_mod_m(3, m)) for m in range(2, 5) ]
[1.0, 1.58496250072, 2.0]





Here we see that the total correlation is equal to \(\log_2{m}\) regardless
of \(n\).

[image: The total correlation :math:`\T[X:Y]`]
[image: The total correlation :math:`\T[X:Y:Z]`]

	
total_correlation(dist, rvs=None, crvs=None, rv_names=None)[source]

	



	Parameters :	
	dist (Distribution) –
The distribution from which the total correlation is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the total
correlation. If None, then the total correlation is calculated
over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool, None) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	T (float) –
The total correlation




	Raises :	ditException –
Raised if dist is not a joint distribution.
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Binding Information

The binding information [1], or dual total correlation, is yet
another generalization of the mutual information. It is defined as:


\[\begin{split}\B[X_{0:n}] &= \H[X_{0:n}] - \sum \H[X_i | X_{\{0..n\}/i}] \\
            &= - \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \frac{p(x_{0:n})}{\prod p(x_i|x_{\{0:n\}/i})}\end{split}\]

[image: The binding information :math:`\B[X:Y]`]
[image: The binding information :math:`\B[X:Y:Z]`]

	
binding_information(dist, rvs=None, crvs=None, rv_names=None)[source]

	



	Parameters :	
	dist (Distribution) –
The distribution from which the binding information is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the binding
information. If None, then the binding information is calculated
over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	B (float) –
The binding information




	Raises :	ditException –
Raised if dist is not a joint distribution.
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Residual Entropy

The residual entropy, or erasure entropy, is a dual to the binding information.


\[\begin{split}\R[X_{0:n}] &= \sum \H[X_i | X_{\{0..n\}/i}] \\
            &= - \sum_{x_{0:n} \in X_{0:n}} p(x_{0:n}) \log_2 \prod p(x_i|x_{\{0:n\}/i})\end{split}\]

[image: The residual entropy :math:`\R[X:Y]`]
[image: The residual entropy :math:`\R[X:Y:Z]`]

	
residual_entropy(dist, rvs=None, crvs=None, rv_names=None)[source]

	



	Parameters :	
	dist (Distribution) –
The distribution from which the residual entropy is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the residual
entropy. If None, then the total correlation is calculated
over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	R (float) –
The residual entropy




	Raises :	ditException –
Raised if dist is not a joint distribution.
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Interaction Information

The interaction information is equal in magnitude to the co-information, but
has the opposite sign when taken over an odd number of variables:


\[\begin{split}\II(X_{0:n}) &= (-1)^{n} \cdot \I(X_{0:n})\end{split}\]

Interaction information was first studied in the 3-variable case which, for
\(X_{0:3} = X_0X_1X_2\), takes the following form:


\[\II(X_0:X_1:X_2) = \I(X_0:X_1|X_2) - \I(X_0:X_1)\]

The extension to \(n>3\) proceeds recursively. For example,


\[\begin{split}\II(X_0:X_1:X_2:X_3)
   &= \II(X_0:X_1:X_2|X_3) - \II(X_0:X_1:X_2) \\
   &= \I(X_0:X_1|X_2,X_3) - \I(X_0:X_1|X_3) \\
   &\qquad - \I(X_0:X_1|X_2) + \I(X_0:X_1)\end{split}\]


	
interaction_information(dist, rvs=None, crvs=None, rv_names=None)[source]

	Calculates the interaction information.





	Parameters :	
	dist (Distribution) –
The distribution from which the interaction information is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the interaction
information between. If None, then the interaction information is
calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	II (float) –
The interaction information.




	Raises :	ditException –
Raised if dist is not a joint distribution.
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Gács-Körner Common Information

The Gács-Körner common information [5] take a very direct approach
to the idea of common information. It extracts a random variable that is
contained within each of the random variables under consideration.


The Common Information Game

Let’s play a game. We have an n-variable joint distribution, and one player for
each variable. Each player is given the probability mass function of the joint
distribution then isolated from each other. Each round of the game the a joint
outcome is generated from the distribution and each player is told the symbol
that their particular variable took. The goal of the game is for the players to
simultaneously write the same symbol on a piece of paper, and for the entropy of
the players’ symbols to be maximized. They must do this using only their
knowledge of the joint random variable and the particular outcome of their
marginal variable. The matching symbols produced by the players are called the
common random variable and the entropy of that variable is the Gács-Körner
common information, \(\K\).




Two Variables

Consider a joint distribution over \(X_0\) and \(X_1\). Given any
particular outcome from that joint, we want a function \(f(X_0)\) and a
function \(g(X_1)\) such that \(\forall x_0x_1 = X_0X_1, f(x_0) =
g(x_1) = v\). Of all possible pairs of functions \(f(X_0) = g(X_1) = V\),
there exists a “largest” one, and it is known as the common random variable. The
entropy of that common random variable is the Gács-Körner common information:


\[\begin{split}\K[X_0 : X_1] &= \max_{f(X_0) = g(X_1) = V} \H[V] \\
              &= \H[X_0 \meet X_1]\end{split}\]

[image: The Gács-Körner common information :math:`\K[X:Y]`]
As a canonical example, consider the following:

>>> from __future__ import division
>>> from dit import Distribution as D
>>> from dit.algorithms import common_information as K
>>> outcomes = ['00', '01', '10', '11', '22', '33']
>>> pmf = [1/8, 1/8, 1/8, 1/8, 1/4, 1/4]
>>> d = D(outcomes, pmf)
>>> K(d)
1.5





So, the Gács-Körner common information is 1.5 bits. But what is the common
random variable?

>>> from dit.algorithms import insert_meet
>>> crv = insert_meet(d, -1, [[0],[1]])
>>> print(crv)
Class:          Distribution
Alphabet:       (('0', '1', '2', '3'), ('0', '1', '2', '3'), ('2', '0', '1'))
Base:           linear
Outcome Class:  str
Outcome Length: 3
RV Names:       None

x     p(x)
002   0.125
012   0.125
102   0.125
112   0.125
220   0.25
331   0.25





Looking at the third index of the outcomes, we see that the common random
variable maps 2 to 0 and 3 to 1, maintaining the information from those values.
When \(X_0\) or \(X_1\) are either 0 or 1, however, it maps them to 2.
This is because \(f\) and \(g\) must act independently: if \(x_0\)
is a 0 or a 1, there is no way to know if \(x_1\) is a 0 or a 1 and vice
versa. Therefore we aggregate 0s and 1s into 2.


Properties & Uses

The Gács-Körner common information satisfies an important inequality:


\[0 \leq \K[X_0:X_1] \leq \I[X_0:X_1]\]

One usage of the common information is as a measure of redundancy
[4]. Consider a function that takes two inputs, \(X_0\) and
\(X_1\), and produces a single output \(Y\). The output can be
influenced redundantly by both inputs, uniquely from either one, or together
they can synergistically influence the output. Determining how to compute the
amount of redundancy is an open problem, but one proposal is:


\[\I[X_0 \meet X_1 : Y]\]

[image: The zero-error redundancy :math:`\K[X\meetY:Z]`]
This quantity can be computed easily using dit:

>>> from dit.example_dists import RdnXor
>>> from dit.algorithms import insert_meet, mutual_information as I
>>> d = RdnXor()
>>> d = insert_meet(d, -1, [[0], [1]])
>>> I(d, [3], [2])
1.0










\(n\)-Variables

With an arbitrary number of variables, the Gács-Körner common information is
defined similarly:


\[\begin{split}\K[X_0 : \ldots : X_n] &= \max_{\substack{V = f_0(X_0) \\ \vdots \\ V = f_n(X_n)}} \H[V] \\
                       &= \H[X_0 \meet \ldots \meet X_n]\end{split}\]

The common information is a monotonically decreasing function:


\[\K[X_0 : \ldots : X_{n-1}] \ge \K[X_0 : \ldots : X_n]\]

The multivariate common information follows a similar inequality as the two
variate version:


\[0 \leq \K[X_0 : \dots : X_n] \leq \min_{i, j \in \{0..n\}} \I[X_i : X_j]\]

[image: The Gács-Körner common information :math:`\K[X:Y:Z]`]

	
common_information(dist, rvs=None, crvs=None, rv_names=None)[source]

	Returns the Gacs-Korner common information K[X1:X2...] over the random
variables in rvs.





	Parameters :	
	dist (Distribution) –
The distribution from which the common information is calculated.

	rvs (list, None) –
The indexes of the random variables for which the Gacs-Korner common
information is to be computed. If None, then the common information is
calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition the common information
by. If none, than there is no conditioning.

	rv_names (bool, None) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	K (float) –
The Gacs-Korner common information of the distribution.
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Perplexity

The perplexity is a trivial measure to make the entropy more intuitive.


\[\P[X] = 2^{\H[X]}\]

The perplexity of a random variable is the size of a uniform distribution that
would have the same entropy. For example, a distribution with 2 bits of entropy
has a perplexity of 4, and so could be said to be “as random” as a four-sided
die.

The conditional perplexity is defined in the natural way:


\[\P[X|Y] = 2^{\H[X|Y]}\]


	
perplexity(dist, rvs=None, crvs=None, rv_names=None)[source]

	



	Parameters :	
	dist (Distribution) –
The distribution from which the perplexity is calculated.

	rvs (list, None) –
The indexes of the random variable used to calculate the perplexity.
If None, then the perpelxity is calculated over all random variables.

	crvs (list, None) –
The indexes of the random variables to condition on. If None, then no
variables are condition on.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	P (float) –
The perplexity.
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Extropy

The extropy [7] is a dual to the entropy.


	
extropy(dist, rvs=None, rv_names=None)[source]

	Returns the extropy J[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the extropy
is calculated with units of ‘bits’ (base-2).





	Parameters :	
	dist (Distribution or float) –
The distribution from which the extropy is calculated. If a float,
then we calculate the binary extropy.

	rvs (list, None) –
The indexes of the random variable used to calculate the extropy.
If None, then the extropy is calculated over all random variables.
This should remain None for ScalarDistributions.

	rv_names (bool) –
If True, then the elements of rvs are treated as random variable
names. If False, then the elements of rvs are treated as random
variable indexes.  If None, then the value True is used if the
distribution has specified names for its random variables.






	Returns:	J (float) –
The extropy of the distribution.
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Jensen-Shannon Divergence

The Jensen-Shannon divergence is a principled divergence measure which is always
finite.


	
jensen_shannon_divergence(dists, weights=None)[source]

	The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).





	Parameters :	
	dists ([Distribution]) –
The distributions, P_i, to take the Jensen-Shannon Divergence of.

	weights ([float], None) –
The weights, w_i, to give the distributions. If None, the weights are
assumed to be uniform.






	Returns:	jsd (float) –
The Jensen-Shannon Divergence




	Raises :	
	ditException –
Raised if there dists and weights have unequal lengths.

	InvalidNormalization –
Raised if the weights do not sum to unity.

	InvalidProbability –
Raised if the weights are not valid probabilities.
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  Source code for dit.algorithms.perplexity

"""
The perplexity of a distribution.
"""

from .shannon import conditional_entropy, entropy
from ..utils.misc import flatten

[docs]def perplexity(dist, rvs=None, crvs=None, rv_names=None):
    """
    Parameters
    ----------
    dist : Distribution
        The distribution from which the perplexity is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the perplexity.
        If None, then the perpelxity is calculated over all random variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    P : float
        The perplexity.
    """

    base = dist.get_base(numerical=True) if dist.is_log() else 2

    if dist.is_joint():
        if rvs is None:
            # Set to entropy of entire distribution
            rvs = list(range(dist.outcome_length()))
            rv_names = False
        else:
            # this will allow inputs of the form [0, 1, 2] or [[0, 1], [2]],
            # allowing uniform behavior with the mutual information like
            # measures.
            rvs = set(flatten(rvs))
        if crvs is None:
            crvs = []
    else:
        return base**entropy(dist)

    return base**conditional_entropy(dist, rvs, crvs, rv_names)
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  Source code for dit.algorithms.binding

"""
The binding information and residual entropy.
"""

from .shannon import conditional_entropy as H
from ..helpers import normalize_rvs

[docs]def binding_information(dist, rvs=None, crvs=None, rv_names=None):
    """
    Parameters
    ----------
    dist : Distribution
        The distribution from which the binding information is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the binding
        information. If None, then the binding information is calculated
        over all random variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    B : float
        The binding information

    Raises
    ------
    ditException
        Raised if `dist` is not a joint distribution.
    """
    rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

    others = lambda rv, rvs: set(set().union(*rvs)) - set(rv)

    one = H(dist, set().union(*rvs), crvs, rv_names)
    two = sum(H(dist, rv, others(rv, rvs).union(crvs), rv_names) for rv in rvs)
    B = one - two

    return B



[docs]def residual_entropy(dist, rvs=None, crvs=None, rv_names=None):
    """
    Parameters
    ----------
    dist : Distribution
        The distribution from which the residual entropy is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the residual
        entropy. If None, then the total correlation is calculated
        over all random variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    R : float
        The residual entropy

    Raises
    ------
    ditException
        Raised if `dist` is not a joint distribution.
    """
    rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

    others = lambda rv, rvs: set(set().union(*rvs)) - set(rv)

    R = sum(H(dist, rv, others(rv, rvs).union(crvs), rv_names) for rv in rvs)

    return R
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  Source code for dit.algorithms.coinformation

"""
The co-information aka the multivariate mututal information.
"""

from iterutils import powerset

from ..helpers import normalize_rvs
from .shannon import conditional_entropy as H

[docs]def coinformation(dist, rvs=None, crvs=None, rv_names=None):
    """
    Calculates the coinformation.

    Parameters
    ----------
    dist : Distribution
        The distribution from which the coinformation is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the coinformation
        between. If None, then the coinformation is calculated over all random
        variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    I : float
        The coinformation.

    Raises
    ------
    ditException
        Raised if `dist` is not a joint distribution.
    """
    rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

    def entropy(rvs, dist=dist, crvs=crvs, rv_names=rv_names):
        """
        Helper function to aid in computing the entropy of subsets.
        """
        return H(dist, set().union(*rvs), crvs, rv_names)

    I = sum( (-1)**(len(Xs)+1) * entropy(Xs) for Xs in powerset(rvs) )

    return I
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  Source code for dit.algorithms.shannon

"""
Some basic Shannon information quantities.

This will be replaced with something better later.

"""

from ..math import LogOperations

import numpy as np

[docs]def entropy(dist, rvs=None, rv_names=None):
    """
    Returns the entropy H[X] over the random variables in `rvs`.

    If the distribution represents linear probabilities, then the entropy
    is calculated with units of 'bits' (base-2).

    Parameters
    ----------
    dist : Distribution or float
        The distribution from which the entropy is calculated. If a float,
        then we calculate the binary entropy.
    rvs : list, None
        The indexes of the random variable used to calculate the entropy.
        If None, then the entropy is calculated over all random variables.
        This should remain `None` for ScalarDistributions.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    H : float
        The entropy of the distribution.

    """
    try:
        # Handle binary entropy.
        float(dist)
    except TypeError:
        pass
    else:
        # Assume linear probability for binary entropy.
        import dit
        dist = dit.ScalarDistribution([dist, 1-dist])
        rvs = None
        rv_names = False

    if dist.is_joint():
        if rvs is None:
            # Set to entropy of entire distribution
            rvs = range(dist.outcome_length())
            rv_names = False

        d = dist.marginal(rvs, rv_names=rv_names)
    else:
        d = dist

    pmf = d.pmf
    if d.is_log():
        base = d.get_base(numerical=True)
        terms = -base**pmf * pmf
    else:
        # Calculate entropy in bits.
        log = LogOperations(2).log
        terms = -pmf * log(pmf)

    H = np.nansum(terms)
    return H


[docs]def conditional_entropy(dist, rvs_X, rvs_Y, rv_names=None):
    """
    Returns the conditional entropy of H[X|Y].

    If the distribution represents linear probabilities, then the entropy
    is calculated with units of 'bits' (base-2).

    Parameters
    ----------
    dist : Distribution
        The distribution from which the conditional entropy is calculated.
    rvs_X : list, None
        The indexes of the random variables defining X.
    rvs_Y : list, None
        The indexes of the random variables defining Y.
    rv_names : bool
        If `True`, then the elements of `rvs_X` and `rvs_Y` are treated as
        random variable names. If `False`, then their elements are treated as
        random variable indexes.  If `None`, then the value `True` is used if
        the distribution has specified names for its random variables.

    Returns
    -------
    H_XgY : float
        The conditional entropy H[X|Y].

    """
    if set(rvs_X).issubset(rvs_Y):
        # This is not necessary, but it makes the answer *exactly* zero,
        # instead of 1e-12 or something smaller.
        return 0.0

    MI_XY = mutual_information(dist, rvs_Y, rvs_X, rv_names)
    H_X = entropy(dist, rvs_X, rv_names)
    H_XgY = H_X - MI_XY
    return H_XgY


[docs]def mutual_information(dist, rvs_X, rvs_Y, rv_names=None):
    """
    Returns the mutual information I[X:Y].

    If the distribution represents linear probabilities, then the entropy
    is calculated with units of 'bits' (base-2).

    Parameters
    ----------
    dist : Distribution
        The distribution from which the mutual information is calculated.
    rvs_X : list, None
        The indexes of the random variables defining X.
    rvs_Y : list, None
        The indexes of the random variables defining Y.
    rv_names : bool
        If `True`, then the elements of `rvs_X` and `rvs_Y` are treated as
        random variable names. If `False`, then their elements are treated as
        random variable indexes.  If `None`, then the value `True` is used if
        the distribution has specified names for its random variables.

    Returns
    -------
    I : float
        The mutual information I[X:Y].

    """
    H_X = entropy(dist, rvs_X, rv_names)
    H_Y = entropy(dist, rvs_Y, rv_names)
    # Make sure to union the indexes. This handles the case when X and Y
    # do not partition the set of all indexes.
    H_XY = entropy(dist, set(rvs_X) | set(rvs_Y), rv_names)
    I = H_X + H_Y - H_XY
    return I
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  Source code for dit.algorithms.interaction_information

"""
The interaction information is a form of multivariate information.
"""

from ..helpers import normalize_rvs

from .coinformation import coinformation

[docs]def interaction_information(dist, rvs=None, crvs=None, rv_names=None):
    """
    Calculates the interaction information.

    Parameters
    ----------
    dist : Distribution
        The distribution from which the interaction information is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the interaction
        information between. If None, then the interaction information is
        calculated over all random variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    II : float
        The interaction information.

    Raises
    ------
    ditException
        Raised if `dist` is not a joint distribution.
    """
    rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

    II = (-1)**len(rvs) * coinformation(dist, rvs, crvs, rv_names)

    return II
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  Source code for dit.algorithms.entropy2

"""
A version of the entropy with signature common to the other multivariate
measures.
"""

from .shannon import conditional_entropy, entropy

[docs]def entropy2(dist, rvs=None, crvs=None, rv_names=None):
    """
    Compute the conditional joint entropy.

    Parameters
    ----------
    dist : Distribution
        The distribution from which the entropy is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the entropy. If
        None, then the entropy is calculated over all random variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    H : float
        The entropy.
    """
    if dist.is_joint():
        if rvs is None:
            # Set to entropy of entire distribution
            rvs = list(range(dist.outcome_length()))
            rv_names = False
        if crvs is None:
            crvs = []
    else:
        return entropy(dist)

    return conditional_entropy(dist, rvs, crvs, rv_names)
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  Source code for dit.algorithms.total_correlation

"""
The total correlation, aka the multi-information or the integration.
"""

from ..helpers import normalize_rvs
from .shannon import conditional_entropy as H

[docs]def total_correlation(dist, rvs=None, crvs=None, rv_names=None):
    """
    Parameters
    ----------
    dist : Distribution
        The distribution from which the total correlation is calculated.
    rvs : list, None
        The indexes of the random variable used to calculate the total
        correlation. If None, then the total correlation is calculated
        over all random variables.
    crvs : list, None
        The indexes of the random variables to condition on. If None, then no
        variables are condition on.
    rv_names : bool, None
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    T : float
        The total correlation

    Raises
    ------
    ditException
        Raised if `dist` is not a joint distribution.
    """
    rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)

    one = sum([ H(dist, rv, crvs, rv_names) for rv in rvs ])
    two = H(dist, set().union(*rvs), crvs, rv_names)
    T = one - two

    return T
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  Source code for dit.algorithms.common_info

"""
Compute the Gacs-Korner common information
"""

from ..helpers import normalize_rvs, parse_rvs
from ..npdist import Distribution
from .lattice import insert_meet
from .shannon import conditional_entropy as H

[docs]def common_information(dist, rvs=None, crvs=None, rv_names=None):
    """
    Returns the Gacs-Korner common information K[X1:X2...] over the random
    variables in `rvs`.

    Parameters
    ----------
    dist : Distribution
        The distribution from which the common information is calculated.
    rvs : list, None
        The indexes of the random variables for which the Gacs-Korner common
        information is to be computed. If None, then the common information is
        calculated over all random variables.
    crvs : list, None
        The indexes of the random variables to condition the common information
        by. If none, than there is no conditioning.
    rv_names : bool, None
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    K : float
        The Gacs-Korner common information of the distribution.

    """
    rvs, crvs, rv_names = normalize_rvs(dist, rvs, crvs, rv_names)
    crvs = parse_rvs(dist, crvs, rv_names)[1]

    outcomes, pmf = zip(*dist.zipped(mode='patoms'))
    d = Distribution(outcomes, pmf)
    d.set_rv_names(dist.get_rv_names())

    d2 = insert_meet(d, -1, rvs, rv_names)

    common = [d2.outcome_length() - 1]

    K = H(d2, common, crvs)

    return K
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  Source code for dit.algorithms.extropy

"""
The extropy
"""

from ..math.ops import LogOperations

import numpy as np

[docs]def extropy(dist, rvs=None, rv_names=None):
    """
    Returns the extropy J[X] over the random variables in `rvs`.

    If the distribution represents linear probabilities, then the extropy
    is calculated with units of 'bits' (base-2).

    Parameters
    ----------
    dist : Distribution or float
        The distribution from which the extropy is calculated. If a float,
        then we calculate the binary extropy.
    rvs : list, None
        The indexes of the random variable used to calculate the extropy.
        If None, then the extropy is calculated over all random variables.
        This should remain `None` for ScalarDistributions.
    rv_names : bool
        If `True`, then the elements of `rvs` are treated as random variable
        names. If `False`, then the elements of `rvs` are treated as random
        variable indexes.  If `None`, then the value `True` is used if the
        distribution has specified names for its random variables.

    Returns
    -------
    J : float
        The extropy of the distribution.

    """
    try:
        # Handle binary extropy.
        float(dist)
    except TypeError:
        pass
    else:
        # Assume linear probability for binary extropy.
        import dit
        dist = dit.ScalarDistribution([dist, 1-dist])
        rvs = None
        rv_names = False

    if dist.is_joint():
        if rvs is None:
            # Set to entropy of entire distribution
            rvs = list(range(dist.outcome_length()))
            rv_names = False

        d = dist.marginal(rvs, rv_names=rv_names)
    else:
        d = dist

    pmf = d.pmf
    if d.is_log():
        base = d.get_base(numerical=True)
        npmf = d.ops.log(1-d.ops.exp(pmf))
        terms = -base**npmf * npmf
    else:
        # Calculate entropy in bits.
        log = LogOperations(2).log
        npmf = 1 - pmf
        terms = -npmf * log(npmf)

    J = np.nansum(terms)
    return J
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  Source code for dit.algorithms.jsd

"""
The Jensen-Shannon Diverence.

This is a reasonable measure of distinguishablity between distribution.
"""

from __future__ import division

import numpy as np
from six.moves import zip # pylint: disable=redefined-builtin

from ..distconst import mixture_distribution
from .shannon import entropy as H

[docs]def jensen_shannon_divergence(dists, weights=None):
    """
    The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).

    Parameters
    ----------
    dists: [Distribution]
        The distributions, P_i, to take the Jensen-Shannon Divergence of.

    weights: [float], None
        The weights, w_i, to give the distributions. If None, the weights are
        assumed to be uniform.

    Returns
    -------
    jsd: float
        The Jensen-Shannon Divergence

    Raises
    ------
    ditException
        Raised if there `dists` and `weights` have unequal lengths.
    InvalidNormalization
        Raised if the weights do not sum to unity.
    InvalidProbability
        Raised if the weights are not valid probabilities.
    """
    if weights is None:
        weights = np.array([ 1/len(dists) ] * len(dists))

    # validation of `weights` is done in mixture_distribution,
    # so we don't need to worry about it for the second part.
    one = H(mixture_distribution(dists, weights, merge=True))
    two = sum(w*H(d) for w, d in zip(weights, dists))
    jsd = one - two
    return jsd
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  Source code for dit.algorithms

"""
Implementations of various information measures.
"""

from .shannon import entropy, conditional_entropy, mutual_information
from .total_correlation import total_correlation
from .coinformation import coinformation
from .interaction_information import interaction_information
from .perplexity import perplexity
from .jsd import jensen_shannon_divergence
from .common_info import common_information
from .binding import binding_information, residual_entropy
from .lattice import insert_join, insert_meet
from .extropy import extropy
from .stats import mean, median, mode, standard_deviation, central_moment, \
                   standard_moment
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